

MINER_vA (E-938)

Goals, Progress and Project

Kevin McFarland University of Rochester FNAL PAC Meeting 7 April 2005

MINERvA in a Nutshell

- MINERvA is a dedicated neutrino cross-section experiment operating in the NuMI near hall
 - in a unique position to provide critical input for world neutrino oscillation program
 - "neutrino engineering" for NuMI program et al.
 - provides an opportunity for studies of proton structure and nuclear effects in axial current
 - "Jefferson Lab west"
 - MINERvA has Stage One approval, and is poised to complete R&D and start construction

The MINERvA Collaboration

- D. Drakoulakos, P. Stamoulis, G. Tzanakos, M. Zois University of Athens, Greece
- D. Casper#, J. Dunmore, C. Regis, B. Ziemer University of California, Irvine
- E. Paschos

University of Dortmund

- D. Boehnlein, D. A. Harris#, M. Kostin, J.G. Morfin*, A. Pla-Dalmau, P. Rubinov, P. Shanahan, P. Spentzouris *Fermi National Accelerator Laboratory*
- M.E. Christy, W. Hinton, C.E. Keppel Hampton University
- R. Burnstein, O. Kamaev, N. Solomey Illinois Institute of Technology
- S. Kulagin

Institute for Nuclear Research, Russia

- I. Niculescu. G. Niculescu James Madison University
- G. Blazey, M.A.C. Cummings, V. Rykalin Northern Illinois University

- W.K. Brooks, A. Bruell, R. Ent, D. Gaskell, W. Melnitchouk, S. Wood *Jefferson Lab*
- S. Boyd, D. Naples, V. Paolone University of Pittsburgh
- A. Bodek, R. Bradford, H. Budd, J. Chvojka,
 P. de Barbaro, S. Manly, K. McFarland*,
 J. Park, W. Sakumoto, J. Steinman
 University of Rochester
- R. Gilman, C. Glasshausser, X. Jiang, G. Kumbartzki, K. McCormick, R. Ransome#, E. Schulte *Rutgers University*
- A. Chakravorty Saint Xavier University
- D. Cherdack, H. Gallagher, T. Kafka, W.A. Mann, W. Oliver *Tufts University*
- J.K. Nelson#, F.X. Yumiceva The College of William and Mary

* Co-Spokespersons # Members of the MINERvA Executive Committee

7 April 2005


HEP/NP Partnership

- Contraction of the second seco
- This effort has sparked effort in NP community

beyond our collaborators...

- JLab approved experiment (JUPITER)
 - data for neutrino cross-section modeling
- Now it's our turn!!

7 April 2005

Neutrino Physics Comes to JLab

The inner workings of the sun, the mysteries of dark matter and dark energy and the structure of the early universe all may be unlocked by one cosmic key: neutrinos. Now, new research carried out in Jefferson Lab's experimental Hall C may help provide insight into neutrinos, the force that governs their behavior and, surprisingly, the structure of the nucleus of the atom.

from the JLab homepage today...

uniqueness...

NuMI: Unique in the World

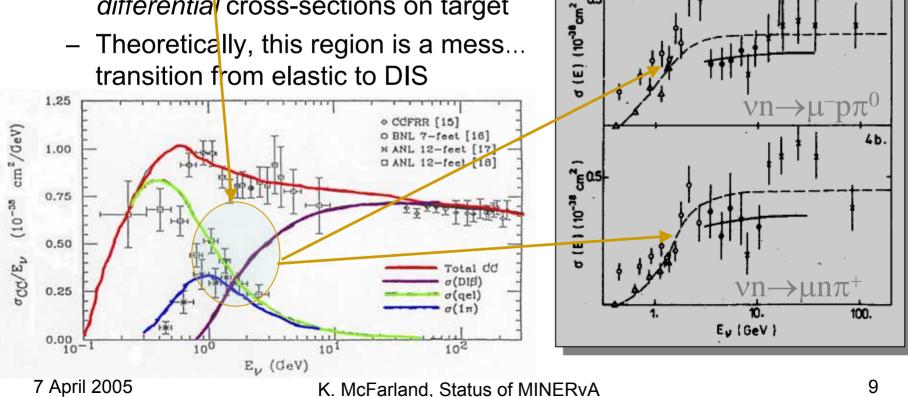
near detectors off-axis no near no near hall, limited in E~700 MeV beam hall energy range Boc CNGS NuN J-PARCv

tunable, broadband beam energy from resonance to deep inelastic regime, spacious near hall, poised for a long run...

7 April 2005

relevance...

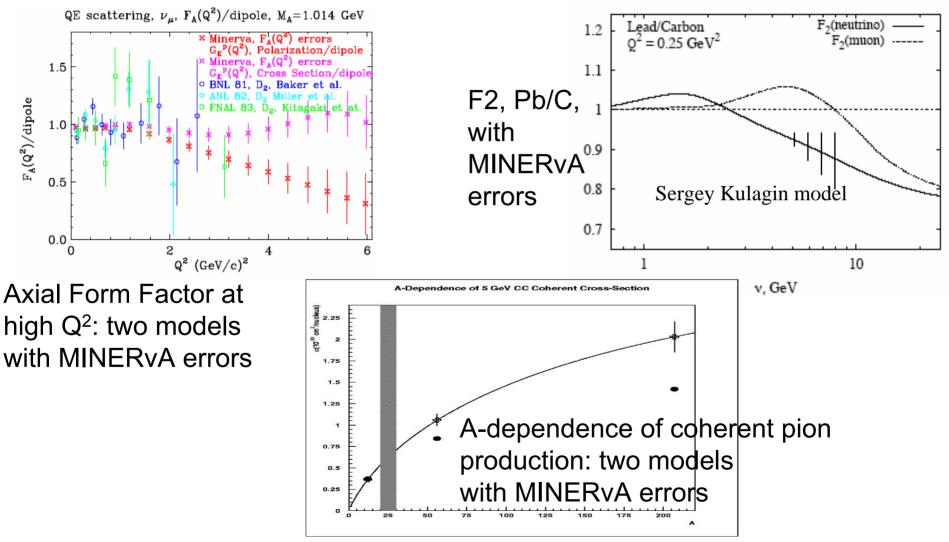
MINERvA and Oscillations


The recent *APS Multidivisional Neutrino Study Report* predicated its recommendations on a set of assumptions about current and future programs including: support for current experiments, international cooperation, underground facilities, R&D on detectors and accelerators, and

"determination of the neutrino reaction and production cross sections required for a precise understanding of neutrino-oscillation physics and the neutrino astronomy of astrophysical and cosmological sources. Our broad and exacting program of neutrino physics is built upon precise knowledge of how neutrinos interact with matter."

Why do we need to know more about neutrino cross-sections?

- At 1-few GeV neutrino energy (of interest for osc. expt's)
 - Experimental errors on total cross-sections are large
 - almost no data on A-dependence
 - Understanding of backgrounds needs differential cross-sections on target
 - Theoretically, this region is a mess... transition from elastic to DIS


MINERvA and Cross-Sections

- Measurements unique to MINERvA
 - high Q² axial form factor of nucleon (complementary to high Q² vector FF, hot at JLab)
 - coherent cross-sections vs. energy (exploit resolution, fully active containing detector)
 - differential dists. for exclusive final states (multi-purpose containing detector, high statistics)
 - A-dependence of:
 - low Q² elastic (K2K/MiniBooNE "low Q² problem"?)
 - exclusive final states (nuclear re-interactions)
 - deep inelastic scattering (F_2^{ν}, xF_3^{ν})

7 April 2005

Sample Expected Results

how does this apply to oscillations?

Oscillation Measurements and Neutrino Interaction Uncertainties

- Current Generation's Primary Goal:
 - Precise Δm^2 measurement from v_{μ} disappearance measurements vs. neutrino energy
 - Biggest systematic concern: how do you know you're really measuring the energy correctly?
- Next Generation's Primary Goal:
 - Search for $\nu_{\mu} \rightarrow \nu_{e}$ transitions at one neutrino energy
 - Biggest systematic concern:
 - Predicting Background accurately
 - At first, claiming discovery based on an excess above background!
 - Later, precision measurements with neutrinos and anti-neutrinos
- Next Generation's "guaranteed" measurement
 - More precise ∆m² measurement, if you can understand the backgrounds in narrow band beam

7 April 2005

4

2

Steel

---- Steel 3σ less π abs.

Steel no π abs.

6

8

10

12

14

16

Neutrino Energy (GeV)

Graphite no π abs

Steel 3σ more π abs.

10

8

12

14

16

Neutrino Energy (GeV)

18 20

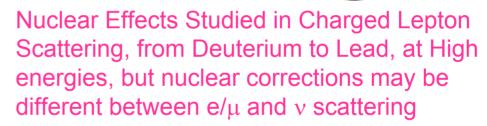
18 20

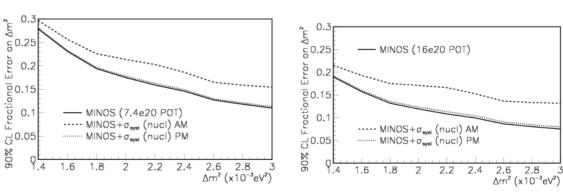
ອົດ.98 ມີ0.96

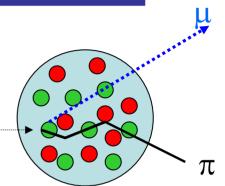
0.94

Visible/T0 88.0 88.0 88.0

0.8

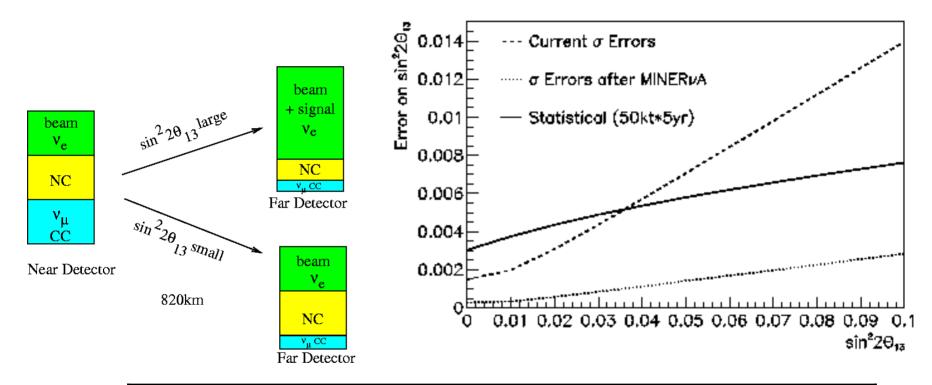

0.94


6.0 Visible/Te

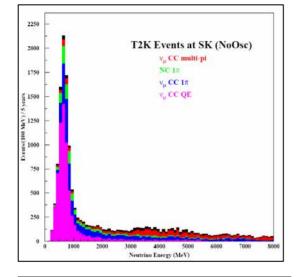

0.84

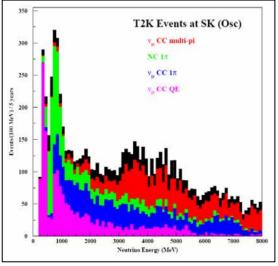
How MINOS will use MINERvA

- Visible Energy in Calorimeter is NOT v energy!
 - $> \pi$ absorption, rescattering
 - Final state rest mass



How NOvA will use MINERvA Measurements




Process	QE	RES	СОН	DIS
δσ/σ NOW (CC,NC)	20%	40%	100%	20%
$\delta\sigma/\sigma$ after MINERvA (CC/NC)	5%/na	5%/10%	5%/20%	5%/10%

Without MINERvA, NOvA risks being limited by cross section uncertainties7 April 2005K. McFarland, Status of MINERvA

How will T2K use MINERvA measurements

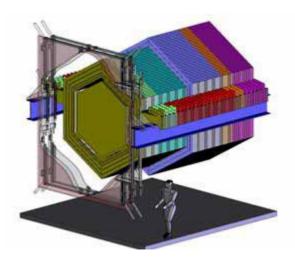
7 April 2005

Note that as in NOvA, T2K's near detector will be a very different mix of events than the far detector.

To make accurate prediction, need

•1 - 4 GeV neutrino cross sections
•Energy Dependence of cross sections

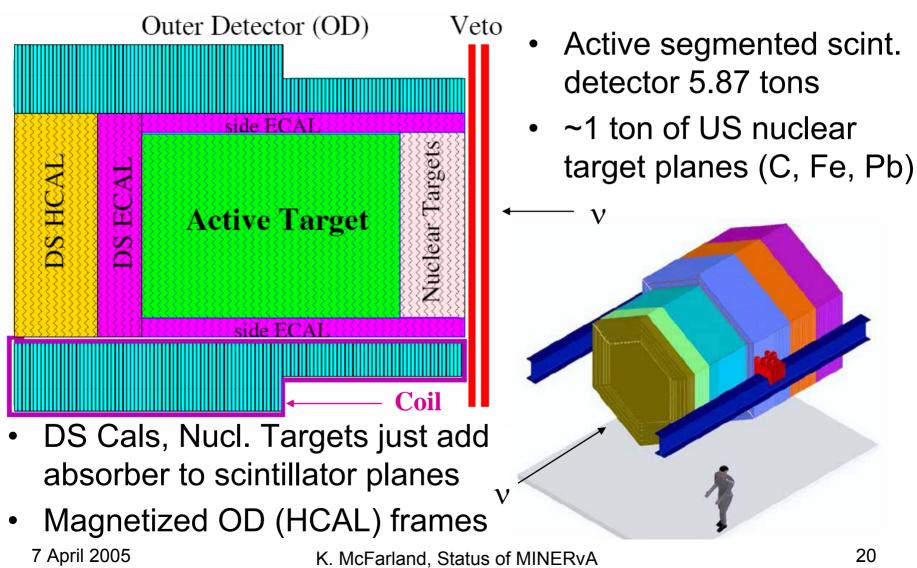
MINERvA can provide these with NuMI beamline Low Energy running!

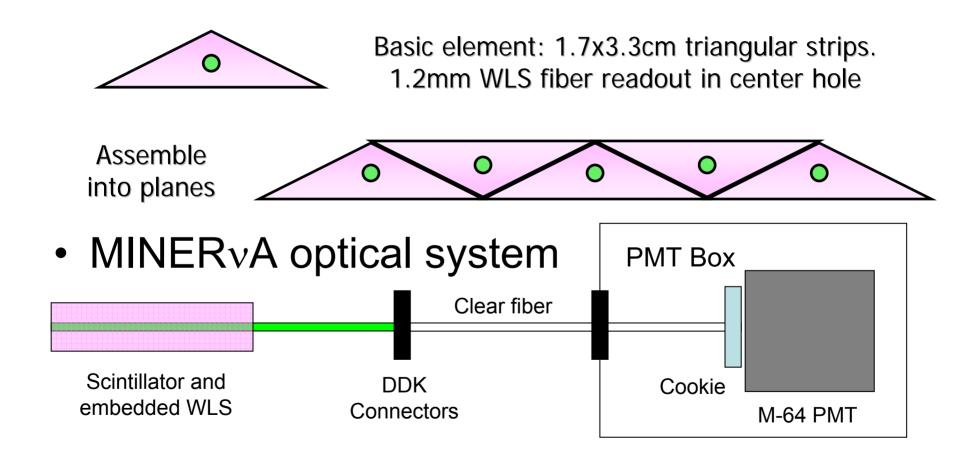

What about Near Detectors?

- MINOS Near Detector:
 - Can't test nuclear effect models with only one nucleus!
- NOvA and T2K Near Detectors:
 - Can't measure energy dependence with only one energy
 - If near design is same as far, can't separate backgrounds any better near than far

MINERvA design solves all three of these problems

the MINERvA detector


To Accomplish its Goals...


- MINERvA proposes to build a low-risk detector with simple, well-understood technology
- Active core is segmented solid scintillator (K2K SciBar)
 - tracking (including low momentum recoil protons)
 - particle identification
 - few ns timing (track direction, identify stopped K^{\pm})
- Surrounded by electromagnetic and then hadronic calorimeters
 - photon (π^0) and hadron (π^{\pm}) energy measurement
 - magnetized for charge, momentum measurement of escaping muons at wide angles

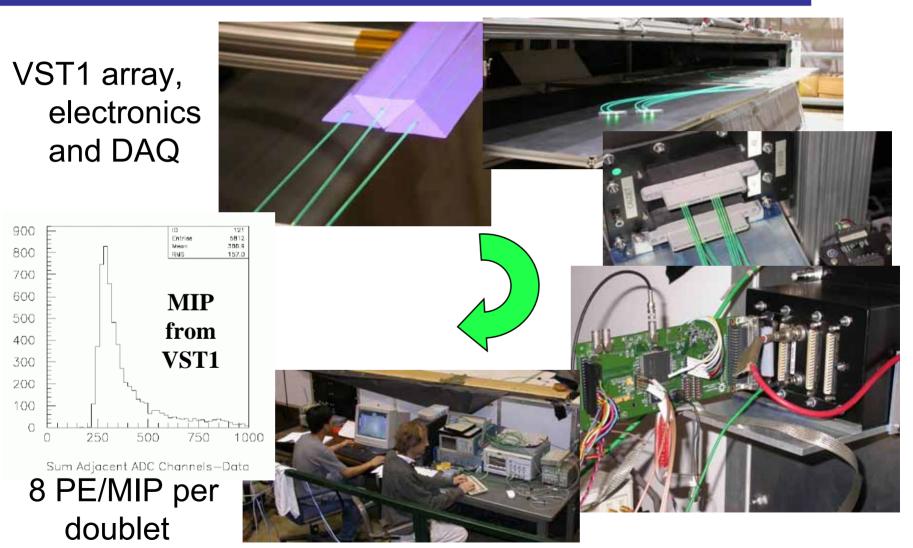
Basic Detector Geometry

can one build it?

MINERvA R&D Progress

- Completed a vertical slice test (VST1)
 - Inner detector scintillator extrusions
 - FNAL, NIU
 - WLS fibers to PMT Box (MINOS) and similar PMT
 - Rochester, Tufts, FNAL (MINOS)
 - Prototype MINERvA Front-End electronics
 - FNAL, Irvine, Pittsburgh, Rochester
- Mechanical Design "complete" at concept level
 - Rochester, FNAL, Tufts
 - Prototyping cables, steel, PMT box: Tufts, Rutgers, Rochester
- Hit-Level Simulation
 - Irvine, Pittsburgh

7 April 2005


K. McFarland, Status of MINERvA

support for this work from FNAL-PPD, DOE HEP university funds, and funds

from collaborating universities

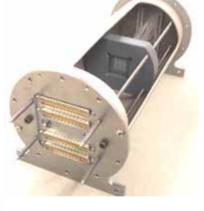
Vertical Slice Test (VST1)

K. McFarland, Status of MINERvA

7 April 2005

Current Prototyping

Contraction of the second seco


• Refining scint. extrusion

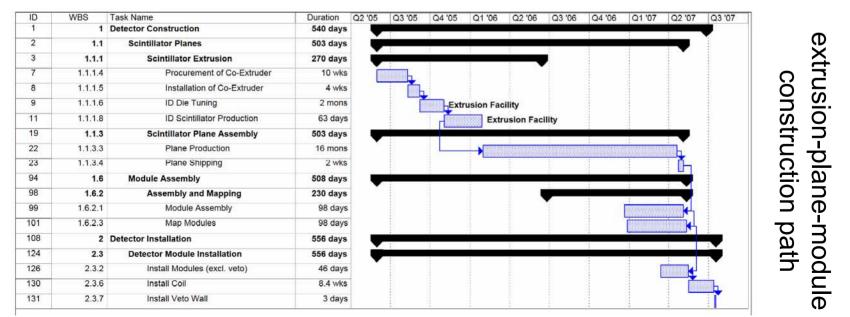
- First "trapezoid" of OD steel
- Prototype PMT box
- Prototype clear fiber cables in progress
- 2nd Prototype front-end and prototype readout electronics

the MINERvA project

Status of MINERvA Project

- We have developed a detailed costing and schedule model
 - basis for our design report and DOE/NSF proposals
 - costs down to Level-3 at worst, usually Level-4 or -5
- First FNAL director's ("Temple") review 1/05
 - generally positive report... they were impressed with our level of detail in design, cost, safety, etc.
 - recommended: formal project management plan, cost vs. physics optimization studies, development of more detailed resource-loaded cost and schedule model

MINERvA Costs


	WBS	Materials and	Salaries, Wages,	Engineering and	
Project	Code	Supplies	Fringe	Design	Total
Scintillator Extrusion / plane					
assembly	1.1	\$1,322,089	\$1,338,359	\$45,074	\$2,705,521
Clear Fibers and connectors	1.2	\$445,864	\$369,740	\$68,960	\$884,564
PMTs, boxes, testing	1.3	\$1,263,124	\$417,112	\$0	\$1,680,236
Electronics, DAQ and Controls	1.4	\$574,730	\$19,714	\$459,359	\$1,053,803
Frame and absorbers	1.5	\$882,105	\$0	\$0	\$882,105
Module assembly	1.6	\$154,666	\$512,932	\$157,964	\$825,562
Coil	1.7	\$208,600	\$0	\$91,000	\$299,600
Installation Preparation	2.1	\$57,000	\$184,400	\$199,400	\$440,800
NUMI Hall Intrastructure	2.2	\$142,800	\$150,100	\$50,000	\$342,900
Detector Installatior	2.3	\$0	\$405,900	\$0	\$405,900
Total		\$5,050,978	\$3,398,257	\$1,071,757	\$9,520,991
s presented to emple review, Jan '	05	legend for FNAL costs	FNAL \$ > 2/3 FNAL \$ > 1/4		

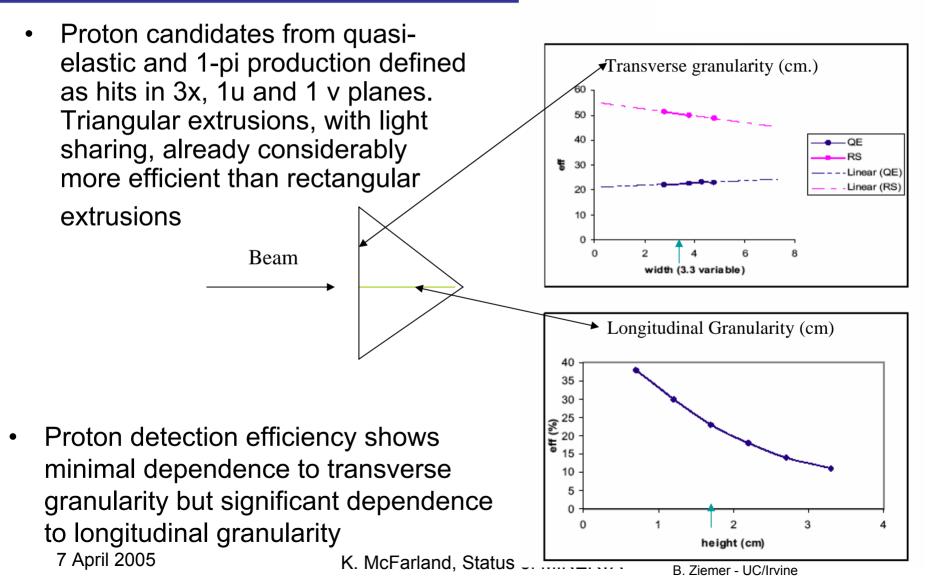
- These costs include contingency (~40%), all University G&A
 - there is significant missing FNAL G&A. ~\$0.5M in model where costs all flow through FNAL
- Assumes specific task distributions by institution and funds FY05-07
 K. McFarland, Status of MINERvA 28

MINERvA Schedule

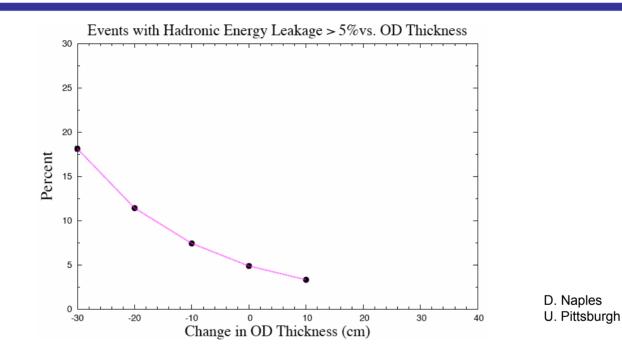
- · Have identified critical paths, spending profile
- Time to complete:
 - roughly 24 months from start of "R&D" phase
 - roughly 18 months from start of "construction funding"

7 April 2005

Project Management



- Experiment has proposed and Fermilab directorate approved
 - Project Manager: Deborah Harris
 - Two co-Deputy Project Managers
 - KSM overseeing University efforts
 - Jorge Morfin overseeing Fermilab efforts
- Project Management Plan has been drafted by the executive committee
- Plan has had first reading by Ed Temple and Dean Hoffer, iterating with Project Manager and co-Deputy Project Managers
- WBS has been refined since Temple Review:


revisiting cost vs. physics optimization

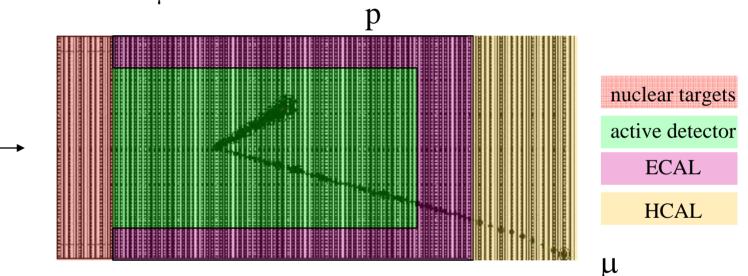
Importance of Longitudinal Granularity Proton Detection Efficiency

The Importance of Barrel Calorimetry Transverse Energy Containment

 Varying the nominal MINERvA outer detector thickness from 30 cm thinner to 10 cm thicker results in a factor of five change in the percentage of DIS events with greater than 5% of the hadronic energy leaking out of the outer detector. For the nominal MINERvA design, only 5% of DIS events lose more than 5% of their hadronic energy.

7 April 2005

conclusions

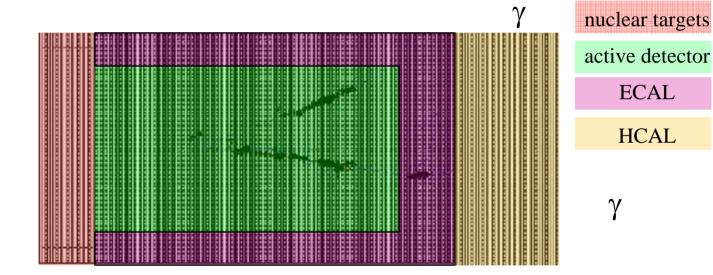

- Opportunity for unique and critical FNAL role in world neutrino efforts in a modest-scale project
 - construction funds in FY07 means running in FY09
 - only possible because of investment in NuMI
- On track technically to build and use detector
 R&D and prototyping progressing
- We are doing what projects do...
 ... including waiting for funding

backup slides

Example Events

Contraction of the second seco

• Quasi-elastic $v_{\mu}n \rightarrow \mu^{-}p$

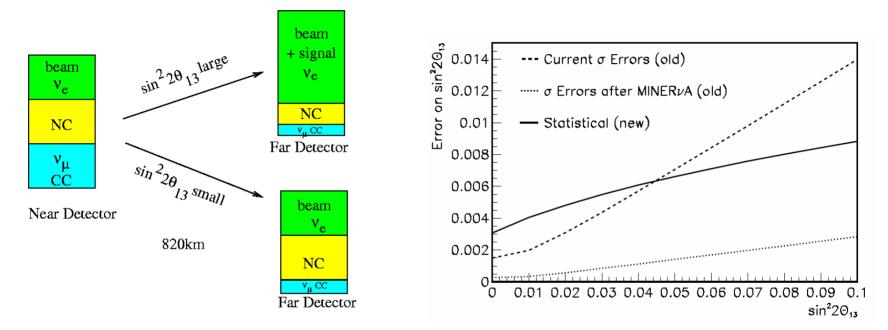

- proton and muon tracks are clearly resolved
- observed energy deposit is shown as size of hit; can clearly see larger proton dE/dx
- precise determination of vertex and measurement of Q² from tracking

7 April 2005

ν

Example Events (cont'd)

• π^0 Production



- two photons clearly resolved (tracked). can find vertex.
- some photons shower in ID, some in side ECAL (Pb absorber) region
- photon energy resolution is ~6%/sqrt(E) (average)

ν

Old NOvA vs New (TASD) NOvA

What about the change from old NOvA design to new design?

Old: FD background was $\frac{1}{2}$ beam v_e , $\frac{1}{2}$ other New: FD background is 2/3 beam v_e , 1/3 other New: Signal has more resonance contributions, more poorly known process Extrapolating near to far will be easier, but probably by ~30%... Statistical error is about the same (same FOM)

7 April 2005

MINERvA statistics and running

Assume $9x10^{20}$ POT: 7.0x 10^{20} in LE v beam, 1.2x 10^{20} in sME v beam and 0.8x 10^{20} in sHE v beam

v_{μ} Event Rates per fiducial ton							
Process	μ CC	NC					
Quasi-elastic	103 K	42 K					
Resonance	196 K	70 K					
Transition	210 K	65 K					
DIS	420 K	125 K					
Coherent	8.4 K	4.2 K					
TOTAL	940 K	305 K					

Typical Fiducial Volume = 3-5 tons CH, 0.6 ton C, ≈ 1 ton Fe and ≈ 1 ton Pb

> 3 - 4.5 M events in CH 0.5 M events in C 1 M events in Fe 1 M events in Pb

Main Physics Topics with Expected Produced Statistics

- Quasi-elastic $v+n \rightarrow \mu^+p 300$ K events off 3 tons CH
- **Resonance Production** e.g. v+N ---> v / μ ⁻+ Δ 600 K total, 450K 1 π
- Coherent Pion Production ν +A --> ν /μ^- +A + π , 25 K CC / 12.5 K NC
- Nuclear Effects C: 0.6M events, Fe: 1M and Pb: 1 M
- σ_T and Structure Functions 2.8 M total /1.2 M DIS events
- Strange and Charm Particle Production (> 60 K fully reconstructed)

MINERvA Costs (Alternate Roll-up)

		Project Estimate (2005-2007) \$								
		Base (always w/G&A included)		Base +		Base +				
		\$		Cont. \$		Cont. \$				
						M&S		SWF	Total	Subproject
WBS	Items	M&S	SWF	Total	M&S Total	Cont %	SWF Total	Cont %	Cont %	Totals
1	MINERvA Detector Construction	3,578,786	2,519,437	6,098,224	4,871,760	36%	3,459,604	37%	37%	8,331,363
1.1	Scintillator Planes	932,686	1,015,362	1,948,048	1,322,089	42%	1,383,402	36%	39%	2,705,491
1.2	Clear Fiber Cables	298,017	289,113	587,130	445,864	50%	438,700	52%	51%	884,564
1.3	Photo Sensors	968,445	334,458	1,302,902	1,263,125	30%	417,112	25%	29%	1,680,237
1.4	Electonics and DAQ	409,029	347,249	756,278	574,730	41%	479,073	38%	39%	1,053,803
1.5	Frame and Absorbers	693,984	0	693,984	882,105		-		27%	882,105
1.6	Module Assembly	127,626	468,255	595,881	175,246	37%	650,317	39%	39%	825,563
1.7	Coil	149,000	65,000	214,000	208,600	40%	91,000	40%	40%	299,600
2	MINERvA Installation	142,714	707,000	849,714	199,800	40%	989,800	40%	40%	1,189,600
2.1	Installation Preparation	40,714	274,143	314,857	57,000	40%	383,800	40%	40%	440,800
2.2	Hall Infrastructure	102,000	142,929	244,929	142,800	40%	200,100	40%	40%	342,900
2.3	Installation	0	289,929	289,929	-		405,900	40%	40%	405,900
	Project Totals	3,721,501	3,226,437	6,947,938	5,071,560		4,449,404			9,520,963

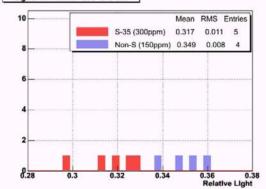
as presented to Temple review, Jan '05

- These costs include contingency (~40%), all University G&A
 - there is significant missing FNAL G&A. ~\$0.5M in model where costs all flow through FNAL
- Assumes specific task distributions by institution and funds FY05-07
 K. McFarland, Status of MINERvA
 41

Vital Statistics of MINERvA

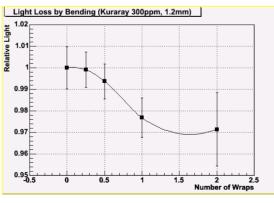
	Number of Channels	30992
	Channels in ID+CALS	25088
	Channels in OD	5904
	Volume of Scintillator (m ³)	22.5
	WLS Fiber (km)	90.7
	Clear Fiber (km)	41.6
	Number of M-64 PMTs	503
	Mass of ID (metric tons)	10.8
	Mass of OD in ID region (metric tons)	98.0
	Mass of CALS, Nuclear Targets (metric tons)	27.2
	Mass of OD in CAL region (metric tons)	62.9
	Total MINERvA Mass (metric tons)	199
	Plastic Region Mass (metric tons)	5.87
	Data Rate (bits/spill)	7.9E+6
7 April 2005	K. McFarland, Status of MINERvA	

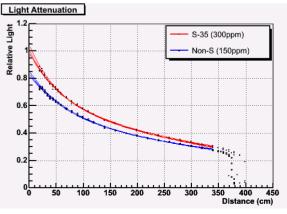
A Brief History of MINERvA



- December 2002 Two EOIs for neutrino scattering experiments using the NuMI beam and similar detector concepts presented to the PAC. PAC suggests uniting efforts and preparing proposal.
- December 2003 MINERvA proposal presented to PAC. PAC requests more quantitative physics studies and details of MINERvA's impact on Fermilab.
- January 2004 -Submit proposal for MRI funding support (maximum \$2M) of partial detector to NSF. Rejected due to no guarantee for funding rest of detector.
- March 2004 MINERvA Impact Statement submitted to Directorate and presented to an Impact Review Committee.
- April 2004 Proposal addendum containing additional physics studies and report from the Impact Review Committee presented to PAC. Receive Stage I approval.
- Summer 2004 R&D Program concentrating on front-end electronics, scintillator extrusions and a "vertical slice test"
- October 2004 Proposal to NP and EPP of NSF to fund bulk of MINERvA.
- December 2004 Proposal to NP and HEP of DOE to fund bulk of MINERvA.
- January 2005 First Director's Review of MINERvA
- February 2005 With release of FY06 budget, DOE of budget process crystallizes; decision that MINERvA must be primarily funded by FNAL budget.

Fiber Testing and Qualification (pre-VST1)




- Fiber testing and qualification (Rochester)
 - attenuation and light yield of WLS fiber for different dopant
 - concentrationsfiber flexibility
 - and light loss tests

